Wenn Sie diesen Text sehen, ist auf ihrem Gerät noch nicht das neue Layout geladen worden. Bitte laden Sie diese Seite neu (ggf. mit gedrückter 'Shift'- oder 'Alt'-Taste) oder in einem 'privaten Fenster'.
Weitere Hinweise unter https://www.uni-hildesheim.de/wiki/lsf/faq/fehler.im.layout.

Zur Seitennavigation oder mit Tastenkombination für den accesskey-Taste und Taste 1 
Zum Seiteninhalt oder mit Tastenkombination für den accesskey und Taste 2 
Startseite    Anmelden     

Modern Optimization Techniques - Einzelansicht

Grunddaten
Veranstaltungsart Vorlesung
Veranstaltungsnummer 3103 Kurztext
Semester WiSe 2017/18 SWS 2
Erwartete Teilnehmer/-innen Max. Teilnehmer/-innen
Rhythmus i.d.R. jedes 2. Semester Studienjahr / Zielgruppe
Credits 6
Hyperlink http://www.ismll.uni-hildesheim.de/lehre/opt-17w/index.html Evaluation
Sprache englisch
Termine Gruppe: 1-Gruppe iCalendar Export
  Tag Zeit Rhythmus Dauer Raum (mögliche Änderungen beachten!) Raum-
plan
Lehrperson Status Bemerkung fällt aus am Max. Teilnehmer/-innen
Einzeltermine anzeigen
iCalendar Export
Mo. 10:00 bis 12:00 c.t. wöchentlich Gebäude K (Hauptcampus) - HC.K.1.Musiksaal (großer Seminarraum) Raumplan       23.10.2017:  Ausfallbemerkung nur nach dem Einloggen sichtbar.
Gruppe 1-Gruppe:
Termine Gruppe: Klausur iCalendar Export
  Tag Zeit Rhythmus Dauer Raum (mögliche Änderungen beachten!) Raum-
plan
Lehrperson Status Bemerkung fällt aus am Max. Teilnehmer/-innen
Einzeltermine anzeigen
iCalendar Export
Fr. 10:00 bis 12:00 s.t. Einzeltermin am 23.02.2018 Gebäude B (Samelson-Campus) - SC.B.0.25 (Seminarraum) Raumplan        
Einzeltermine anzeigen
iCalendar Export
Fr. 10:00 bis 12:00 s.t. Einzeltermin am 23.02.2018 Gebäude B (Samelson-Campus) - SC.B.0.26 (Seminarraum) Raumplan        
Einzeltermine anzeigen
iCalendar Export
Fr. 10:00 bis 12:00 s.t. Einzeltermin am 23.02.2018 Gebäude A (Samelson-Campus) - SC.A.0.09 (Großer Seminarraum) Raumplan        
Einzeltermine anzeigen
iCalendar Export
Fr. 10:00 bis 12:00 s.t. Einzeltermin am 23.02.2018 Gebäude C (Samelson-Campus) - SC.C.2.13 (Seminarraum) Raumplan        
Gruppe Klausur:
Prüfungstermine
Semester Termin Prüfer/-in Parallelgruppe Datum Prüfungsform Beginn Anmeldefrist Ende Anmeldefrist Ende Abmeldefrist Infos zu Nachschreibterminen
WiSe 2017/18 01 23.02.2018 Klausur 22.02.2018 VERBINDLICH 22.02.2018 VERBINDLICH
WiSe 2017/18 02 18.04.2018 Klausur 02.03.2018 11.04.2018 VERBINDLICH 17.04.2018 VERBINDLICH SoSe 2018: 3132 Nachschreibeklausur MOT WS 17-18


Zugeordnete Personen
Kontaktpersonen (durchführend) Zuständigkeit
Schmidt-Thieme, Lars, Professor Dr. Dr. verantwortlich und durchführend
Jameel, Mohsan , M.S.c durchführend, nicht verantwortlich
Weitere Person Zuständigkeit
Voß, Lydia , M.Sc. nicht durchführend, nicht verantwortlich
Studiengänge
Abschluss Studiengang Semester ECTS Kontingent
Bachelor B.Sc. I M I T
Bachelor B.Sc. IMIT Studienvar. AI
Bachelor B.Sc. Wirtschaftsinformat
Master M.Sc. Data Analytics
Master M.Sc. IMIT Studienvar. AI
Master M.Sc. Informationsmanagm.
Master M.Sc. Wirtschaftsinf.
LSF - Module
Modulkürzel Modultitel
MIT-MOT Modern Optimization Techniques
xMIT-V6KIM Gebiet KIML (WINF/IMIT), Vorl 6AP (MA vor PO 2014)
MIT-V6KIML Gebiet KIML (IMIT), Vorl 6 AP (MA ab PO 2014)
MWI-BI6LP Ergänzung zu Prüfung im Modul Business Intelligence mit 6 LP (M WINF)
0ERA-6LP Veranstaltungen mit 6 Credits f. ausl. Programmstud. (ERASMUS)
Zuordnung zu Einrichtungen
Abt. Wirtschaftsinformatik und Maschinelles Lernen
Inhalt
Literatur
  1. Stephen Boyd and Lieven Vandenberghe. Convex Optimization. Cambridge Univ Press, 2004.
  2. Suvrit Sra, Sebastian Nowozin and Stephen J. Wright. Optimization for Machine Learning. MIT Press, 2011.
  3. Igor Griva. Linear and nonlinear optimization. Society for Industrial and Applied Mathematics, 2009.
Bemerkung

Gebiet: IMIT & WI und KI + ML (MSc)

Turnus: jedes 5. Semester

Lerninhalte

Optimization techniques are at the heart of the solution to a number of real world problems. A number of optimization techniques have been developed during the years and each of them find their application according to the problem characteristics. This course will concentrate on recognizing common convex optimization problems that arise in real world applications and their key charachteristics as well as different approaches to solve them. Several optimization problems will be formally described and illustrated with examples. We will study approaches for unconstrained and equality constrained optimization (stochastic gradient descent, Newton's method and coordinate descent), interior-point methods for solving inequality-constrained problems, as well as extensions and improvements of classical optimization methods like Quasi-Newton, conjugate gradient and cutting plane methods. All of those methods will be illustrated with proactical applications mainly in the area of machine learning.

Zielgruppe

Für Studierende des Masterstudiengangs Informationsmanagement und Informationstechnologie & Wirtschaftsinformatik

MSc 1-3


Strukturbaum
Keine Einordnung ins Vorlesungsverzeichnis vorhanden. Veranstaltung ist aus dem Semester WiSe 2017/18 , Aktuelles Semester: WiSe 2024/25
Impressum      Datenschutzerklärung     Datenschutz      Datenschutzerklärung     Erklärung zur Barrierefreiheit