Wenn Sie diesen Text sehen, ist auf ihrem Gerät noch nicht das neue Layout geladen worden. Bitte laden Sie diese Seite neu (ggf. mit gedrückter 'Shift'- oder 'Alt'-Taste) oder in einem 'privaten Fenster'.
Weitere Hinweise unter https://www.uni-hildesheim.de/wiki/lsf/faq/fehler.im.layout.

Zur Seitennavigation oder mit Tastenkombination für den accesskey-Taste und Taste 1 
Zum Seiteninhalt oder mit Tastenkombination für den accesskey und Taste 2 
Startseite    Anmelden     

Data Analytics III - Einzelansicht

Grunddaten
Veranstaltungsart Seminar
Veranstaltungsnummer 3112 Kurztext
Semester WiSe 2017/18 SWS 2
Erwartete Teilnehmer/-innen 6 Max. Teilnehmer/-innen
Rhythmus i.d.R. jedes Semester Studienjahr / Zielgruppe
Credits 4
Hyperlink https://www.ismll.uni-hildesheim.de/lehre/semDA3-17w/index.html Evaluation
Sprache englisch
Termine Gruppe: 1-Gruppe iCalendar Export
  Tag Zeit Rhythmus Dauer Raum (mögliche Änderungen beachten!) Raum-
plan
Lehrperson Status Bemerkung fällt aus am Max. Teilnehmer/-innen
Einzeltermine anzeigen
iCalendar Export
Di. 14:00 bis 16:00 c.t. wöchentlich Gebäude B (Samelson-Campus) - B 141 (Seminarraum, gesperrt ab dem Sommersemester 2020) Raumplan        
Gruppe 1-Gruppe:


Zugeordnete Person
Kontaktperson (durchführend) Zuständigkeit
Schmidt-Thieme, Lars, Professor Dr. Dr. durchführend, nicht verantwortlich
Studiengänge
Abschluss Studiengang Semester ECTS Kontingent
Master M.Sc. Data Analytics
Master M.Sc. Informationsmanagm.
Master M.Sc. Wirtschaftsinf.
LSF - Module
Modulkürzel Modultitel
0ERA-4LP Veranstaltungen mit 4 Credits f. ausl. Programmstud. (ERASMUS)
MIT-SKIML Seminar KI und Maschinelles Lernen (M WINF/IMIT bis PO 2016)
MDA-SDA3 Seminar Data Analytics III (M DA/ AT+SE/ AInf/ IMI)
MWI-BI-S4L Seminar, Ergänzung zu Prüfungen aus dem Modul Business Intelligence mit 4 LP (M WINF)
xMWI-SEBI Seminar Business Intelligence (Master)
MWINF-SeBI Seminar Business Intelligence (Master WINF)
xWI-SEBI Seminar Business Intelligence
Zuordnung zu Einrichtungen
Abt. Wirtschaftsinformatik und Maschinelles Lernen
Inhalt
Literatur

[1] Esling, P., Agon, C.: Time-series data mining. ACM Comput. Surv. 45(1) (December 2012) 12:1-12:34

[2] Gooijer, J.G.D., Hyndman, R.J.: 25 years of time series forecasting. International Journal of Forecasting 22(3) (2006) 443 - 473

Voraussetzungen

Data Analytics:

Students should have passed already seminar Data Analytics I and II

Lerninhalte

T

Zielgruppe

Für Studierende der Masterstudiengänge Wirtschaftsinformatik und Informationsmanagement und Informationstechnologie


Strukturbaum
Keine Einordnung ins Vorlesungsverzeichnis vorhanden. Veranstaltung ist aus dem Semester WiSe 2017/18 , Aktuelles Semester: WiSe 2024/25
Impressum      Datenschutzerklärung     Datenschutz      Datenschutzerklärung     Erklärung zur Barrierefreiheit