Wenn Sie diesen Text sehen, ist auf ihrem Gerät noch nicht das neue Layout geladen worden. Bitte laden Sie diese Seite neu (ggf. mit gedrückter 'Shift'- oder 'Alt'-Taste) oder in einem 'privaten Fenster'.
Weitere Hinweise unter https://www.uni-hildesheim.de/wiki/lsf/faq/fehler.im.layout.

Zur Seitennavigation oder mit Tastenkombination für den accesskey-Taste und Taste 1 
Zum Seiteninhalt oder mit Tastenkombination für den accesskey und Taste 2 
  1. SucheSuchen         
  2. SoSe 2019
  3. Hilfe
  4. Sitemap
Switch to english language
Startseite    Anmelden     

Business Analytics - Einzelansicht

Grunddaten
Veranstaltungsart Vorlesung
Veranstaltungsnummer 3107 Kurztext
Semester WiSe 2016/17 SWS 2
Erwartete Teilnehmer/-innen Max. Teilnehmer/-innen
Rhythmus Studienjahr / Zielgruppe
Credits 3
Hyperlink   Evaluation Ja (als gesamte Veranstaltung - Papier)
Sprache englisch
Termine Gruppe: 1-Gruppe iCalendar Export
  Tag Zeit Rhythmus Dauer Raum (mögliche Änderungen beachten!) Raum-
plan
Lehrperson Status Bemerkung fällt aus am Max. Teilnehmer/-innen
Einzeltermine anzeigen
iCalendar Export
Do. 14:00 bis 16:00 c.t. wöchentlich von 20.10.2016  Gebäude A (Samelson-Campus) - A 009 (Großer Seminarraum) Raumplan        
Einzeltermine anzeigen
iCalendar Export
Do. 10:00 bis 12:00 s.t. Einzeltermin am 30.03.2017 Gebäude C (Samelson-Campus) - C 213 (Seminarraum) Raumplan        
Gruppe 1-Gruppe:
Termine Gruppe: Klausur iCalendar Export
  Tag Zeit Rhythmus Dauer Raum (mögliche Änderungen beachten!) Raum-
plan
Lehrperson Status Bemerkung fällt aus am Max. Teilnehmer/-innen
Einzeltermine anzeigen
iCalendar Export
Di. 10:00 bis 12:00 s.t. Einzeltermin am 28.02.2017 Gebäude A (Samelson-Campus) - A 009 (Großer Seminarraum) Raumplan        
Gruppe Klausur:
Prüfungstermine
Semester Termin Prüfer/-in Parallelgruppe Datum Prüfungsform Beginn Anmeldefrist Ende Anmeldefrist Ende Abmeldefrist Infos zu Nachschreibterminen
WiSe 2016/17 01 28.02.2017 Klausur 02.11.2016 20.12.2016 VERBINDLICH 27.02.2017 VERBINDLICH
WiSe 2016/17 02 30.03.2017 Klausur 05.03.2017 16.03.2017 VERBINDLICH 29.03.2017 VERBINDLICH


Zugeordnete Personen
Zugeordnete Personen Zuständigkeit
Grabocka, Josif, Dr. verantwortlich und durchführend
Schmidt-Thieme, Lars, Professor Dr. Dr. verantwortlich, nicht durchführend
Wistuba, Martin , M.Sc. nicht durchführend, nicht verantwortlich
Studiengänge
Abschluss Studiengang Semester ECTS Kontingent
Bachelor B.Sc. I M I T
Bachelor B.Sc. IMIT Studienvar. AI
Bachelor B.Sc. Wirtschaftsinformat (PO 2011)
Bachelor B.Sc. Wirtschaftsinformat (PO 2014)
Master M.Sc. Data Analytics
Master M.Sc. IMIT Studienvar. AI
Master M.Sc. Informationsmanagm.
Master M.Sc. Wirtschaftsinf. (PO 2011)
Master M.Sc. Wirtschaftsinf. (PO 2014)
LSF - Module
Modulkürzel Modultitel
0ERA-3LP Veranstaltungen mit 3 Credits f. ausl. Programmstud. (ERASMUS)
MWI-BA Business Analytics
MDA-BusA Business Analytics
MWI-WA6LP Wahlbereich (MA) Wirtschaftsinformatik i.e.S. (6 LP)
Zuordnung zu Einrichtungen
Abt. Wirtschaftsinformatik und Maschinelles Lernen
Inhalt
Lerninhalte

Business Analytics aims at introducing students to the fundamental data science know-how, which provides a start-level proficiency for tackling data-driven business problems.

Initially the course explains prediction models for Regression and Classification tasks, as well as typical Clustering approaches. Frequent Pattern Mining that discovers association rules from transactional data will be covered as well. Dimensionality Reduction techniques are taught with regards to both visualisation and feature extraction aspects. In addition, personalized strategies in the realm of Recommender Systems will be exploited. On the other hand, the course covers Time-Series Forecasting methods, as well as Process Mining from industrial data logs. Last, but not least, the course aims at providing an introduction on current strategies needed to scale data analytics methods to handle big data.

 

Zielgruppe

Studierende des Studiengangs Wirtschaftsinformatik/IMIT - MSc 1-3


Strukturbaum
Keine Einordnung ins Vorlesungsverzeichnis vorhanden. Veranstaltung ist aus dem Semester WiSe 2016/17 , Aktuelles Semester: SoSe 2019
Impressum      Datenschutzerklärung     Datenschutz