Wenn Sie diesen Text sehen, ist auf ihrem Gerät noch nicht das neue Layout geladen worden. Bitte laden Sie diese Seite neu (ggf. mit gedrückter 'Shift'- oder 'Alt'-Taste) oder in einem 'privaten Fenster'.
Weitere Hinweise unter https://www.uni-hildesheim.de/wiki/lsf/faq/fehler.im.layout.

Zur Seitennavigation oder mit Tastenkombination für den accesskey-Taste und Taste 1 
Zum Seiteninhalt oder mit Tastenkombination für den accesskey und Taste 2 
  1. SucheSuchen         
  2. SoSe 2019
  3. Hilfe
  4. Sitemap
Switch to english language
Startseite    Anmelden     

Bayesian Networks - Einzelansicht

Grunddaten
Veranstaltungsart Vorlesung
Veranstaltungsnummer 3105 Kurztext
Semester WiSe 2016/17 SWS 2
Erwartete Teilnehmer/-innen Max. Teilnehmer/-innen
Rhythmus i.d.R. jedes 2. Semester Studienjahr / Zielgruppe
Credits 3
Hyperlink http://www.ismll.uni-hildesheim.de/lehre/bn-16w/index.html Evaluation Ja (als gesamte Veranstaltung - Papier)
Sprache deutsch
Termine Gruppe: 1-Gruppe iCalendar Export
  Tag Zeit Rhythmus Dauer Raum (mögliche Änderungen beachten!) Raum-
plan
Lehrperson Status Bemerkung fällt aus am Max. Teilnehmer/-innen
Einzeltermine anzeigen
iCalendar Export
Mo. 10:00 bis 12:00 c.t. wöchentlich von 17.10.2016  Gebäude A (Samelson-Campus) - A 102 (Seminarraum) Raumplan        
Einzeltermine anzeigen
iCalendar Export
Di. 10:00 bis 12:00 s.t. Einzeltermin am 28.03.2017 Gebäude C (Samelson-Campus) - C 213 (Seminarraum) Raumplan        
Gruppe 1-Gruppe:
Termine Gruppe: Klausur iCalendar Export
  Tag Zeit Rhythmus Dauer Raum (mögliche Änderungen beachten!) Raum-
plan
Lehrperson Status Bemerkung fällt aus am Max. Teilnehmer/-innen
Einzeltermine anzeigen
iCalendar Export
Di. 14:00 bis 16:00 s.t. Einzeltermin am 28.02.2017 Gebäude A (Samelson-Campus) - A 009 (Großer Seminarraum) Raumplan        
Gruppe Klausur:
Prüfungstermine
Semester Termin Prüfer/-in Parallelgruppe Datum Prüfungsform Beginn Anmeldefrist Ende Anmeldefrist Ende Abmeldefrist Infos zu Nachschreibterminen
WiSe 2016/17 01 Schmidt-Thieme, Lars 28.02.2017 Klausur 02.11.2016 20.12.2016 VERBINDLICH 27.02.2017 VERBINDLICH
WiSe 2016/17 02 Schmidt-Thieme, Lars 28.03.2017 Klausur 05.03.2017 22.03.2017 VERBINDLICH 27.03.2017 VERBINDLICH


Zugeordnete Personen
Zugeordnete Personen Zuständigkeit
Schmidt-Thieme, Lars, Professor Dr. Dr. verantwortlich und durchführend
Voß, Lydia , M.Sc. nicht durchführend, nicht verantwortlich
Studiengänge
Abschluss Studiengang Semester ECTS Kontingent
Bachelor B.Sc. I M I T
Bachelor B.Sc. IMIT Studienvar. AI
Bachelor B.Sc. Wirtschaftsinformat (PO 2011)
Bachelor B.Sc. Wirtschaftsinformat (PO 2014)
Master M.Sc. Data Analytics
Master M.Sc. IMIT Studienvar. AI
Master M.Sc. Informationsmanagm.
Master M.Sc. Wirtschaftsinf. (PO 2011)
Master M.Sc. Wirtschaftsinf. (PO 2014)
LSF - Module
Modulkürzel Modultitel
MIT-VBNets Bayessche Netze
0ERA-3LP Veranstaltungen mit 3 Credits f. ausl. Programmstud. (ERASMUS)
Zuordnung zu Einrichtungen
Abt. Wirtschaftsinformatik und Maschinelles Lernen
Inst. für Informatik
Inhalt
Literatur

Christian Borgelt and Rudolf Kruse. Graphical Models. Wiley, New York, 2002.

B. G. Buchanan and E. H. Shortliffe. Rule-Based Expert Systems: The MYCIN Experiments of the Stanford Heuristic Programming Project. Wiley, New York, 1984.

Enrique Castillo, José Manuel Gutiérrez, and Ali S. Hadi. Expert Systems and Probabilistic Network Models. Springer, New York, 1997.

Richard O. Duda, Peter E. Hard, and N. Nilsson. Subjective bayesian methods for rule-based inference systems. In Proceedings of the 1976 National Computer Conference (AFIPS), volume 45, pages 1075–1082, 1976.

Finn V. Jensen. Bayesian networks and decision graphs. Springer, New York, 2001.

Richard E. Neapolitan. Probabilistic Reasoning in Expert Systems: Theory and Algorithms. Wiley, New York, 1990.

Richard E. Neapolitan. Learning Bayesian Networks. Prentice Hall, 2003.

Bemerkung

Gebiet: IMIT & WI und KI + ML (MSc)

Turnus: jedes 5. Semester

Lerninhalte

Bayessche Netze sind eine sehr flexible Modellklasse des Data Mining (aber auch der angewandten Statistik). Sie dienen der Erfassung der probabilistischen Abhängigkeit zwischen Variablen und können - im Gegensatz zu einem reinen Vorhersage-Modell wie etwa einem Entscheidungsbaum - zur Vorhersage wechselnder und zusammengesetzter Zielgrößen verwendet werden. In einem Bayesschen Netz werden Abhängigkeiten zwischen Variablen mittels eines Graphen und die genaue Form der Abhängkeit mittels bedingter Wahrscheinlichkeiten dargestellt.

Die Vorlesung gibt eine Einführung in Bayessche Netze. Ausgehend von der prinzipiellen Modellierung von Einflüssen und bedingten Wahrscheinlichkeiten werden Algorithmen für die exakte und näherungsweise Inferenz (Propagation von Evidenz), die Analyse bayesscher Netze (wahrscheinlichste Erklärung), das Lernen von Parametern sowie das Lernen der Struktur behandelt.

Algorithmen für Inferenz und das Lernen bayesscher Netze greifen i.d.R. auf Graphen-Algorithmen zurück, sowohl auf weit verbreitete Verfahren wie topologische Sortierung und Zusammenhang-Überprüfung, als auch auf speziellere Verfahren wie das Aufzählen von Cliquen etc. Um die Vorlesung möglichst unabhängig zu halten, werden alle benötigten Algorithmen auch in der Vorlesung vorgestellt.

Zielgruppe

Studierende des Masterstudiengangs Informationsmanagement und Informationstechnologie & Wirtschaftsinformatik - MSc 1-3


Strukturbaum
Keine Einordnung ins Vorlesungsverzeichnis vorhanden. Veranstaltung ist aus dem Semester WiSe 2016/17 , Aktuelles Semester: SoSe 2019
Impressum      Datenschutzerklärung     Datenschutz