Wenn Sie diesen Text sehen, ist auf ihrem Gerät noch nicht das neue Layout geladen worden. Bitte laden Sie diese Seite neu (ggf. mit gedrückter 'Shift'- oder 'Alt'-Taste) oder in einem 'privaten Fenster'.
Weitere Hinweise unter https://www.uni-hildesheim.de/wiki/lsf/faq/fehler.im.layout.

Zur Seitennavigation oder mit Tastenkombination für den accesskey-Taste und Taste 1 
Zum Seiteninhalt oder mit Tastenkombination für den accesskey und Taste 2 
Startseite    Anmelden     

Lab Programming Machine Learning - Einzelansicht

Grunddaten
Veranstaltungsart Praktikum
Veranstaltungsnummer 3112 Kurztext
Semester WiSe 2016/17 SWS 4
Erwartete Teilnehmer/-innen 10 Max. Teilnehmer/-innen
Rhythmus i.d.R. jedes 2. Semester Studienjahr / Zielgruppe
Credits 6
Hyperlink http://www.ismll.uni-hildesheim.de/lehre/prakAIML-16w/index.html Evaluation Ja (als gesamte Veranstaltung - online)
Sprache englisch
Termine Gruppe: 1-Gruppe iCalendar Export
  Tag Zeit Rhythmus Dauer Raum (mögliche Änderungen beachten!) Raum-
plan
Lehrperson Status Bemerkung fällt aus am Max. Teilnehmer/-innen
iCalendar Export Mi. 14:00 bis 18:00 c.t. wöchentlich Gebäude A (Samelson-Campus) - A 119 Spl (Computerraum IMAI) Raumplan   fällt aus    
Einzeltermine anzeigen
iCalendar Export
Do. 10:00 bis 14:00 c.t. wöchentlich von 20.10.2016  Gebäude C (Samelson-Campus) - C 147 (Computerraum) Raumplan        
Gruppe 1-Gruppe:


Zugeordnete Personen
Zugeordnete Personen Zuständigkeit
Jameel, Mohsan , M.S.c durchführend, nicht verantwortlich
Schmidt-Thieme, Lars, Professor Dr. Dr. verantwortlich, nicht durchführend
Studiengänge
Abschluss Studiengang Semester ECTS Kontingent
Bachelor B.Sc. I M I T
Bachelor B.Sc. Wirtschaftsinformat (PO 2011)
Bachelor B.Sc. Wirtschaftsinformat (PO 2014)
Master M.Sc. Data Analytics
Master M.Sc. Informationsmanagm.
Master M.Sc. Wirtschaftsinf. (PO 2011)
Master M.Sc. Wirtschaftsinf. (PO 2014)
Master M.Sc. Wirtschaftsinf. (PO 2014)
LSF - Module
Modulkürzel Modultitel
MIT-V6KIMa Gebiet KIML (WINF/IMIT), Vorl 6AP (MA vor PO 2014)
0ERA-6LP Veranstaltungen mit 6 Credits f. ausl. Programmstud. (ERASMUS)
IT-PKI Praktikum Künstliche Intelligenz
MIT-PML Master-Praktikum Maschinelles Lernen
WI-PRBI Praktikum Business Intelligence und Data Mining
MDA-LCPML Lab Course Programming Machine Learning
MWI-PML Programming Machine Learning
Zuordnung zu Einrichtungen
Abt. Wirtschaftsinformatik und Maschinelles Lernen
Inhalt
Literatur
  • Murphy, Kevin P. Machine learning: a probabilistic perspective. MIT press, 2012.
    Christopher M. Bishop (2006): Pattern Recognition and Machine Learning.
    Lutz, Mark. Learning python. " O'Reilly Media, Inc.", 2013.
Lerninhalte

This implementation-oriented course offers hands-on experience with current algorithms and approaches in Machine Learning and Artificial Intelligence, and their application to real-world learning and decision-making tasks. Praktikum will also cover empirical methods for comparing learning algorithms, for understanding and explaining their differences, for analyzing the conditions in which a method is more suitable than others.
On weekly basis, we shall implement linear models for predictions (Linear Regression, Logistic Regression), classification trees (Decision trees), prototype method for clustering (K-Means), prototype classification methods (K-Nearest Neighbor, Naive Bayes classifier, Support Vector Machines) and link-based ranking algorithm PageRank.
The programming language for this course will be Python. We will also look at most popular libraries for solving different models.

Zielgruppe

Für Studierende der Bachelor-und Masterstudiengänge Wirtschaftsinformatik und Informationsmanagement und Informationstechnologie


Strukturbaum
Keine Einordnung ins Vorlesungsverzeichnis vorhanden. Veranstaltung ist aus dem Semester WiSe 2016/17 , Aktuelles Semester: WiSe 2018/19
Impressum      Datenschutzerklärung     Datenschutz