Wenn Sie diesen Text sehen, ist auf ihrem Gerät noch nicht das neue Layout geladen worden. Bitte laden Sie diese Seite neu (ggf. mit gedrückter 'Shift'- oder 'Alt'-Taste) oder in einem 'privaten Fenster'.
Weitere Hinweise unter https://www.uni-hildesheim.de/wiki/lsf/faq/fehler.im.layout.

Zur Seitennavigation oder mit Tastenkombination für den accesskey-Taste und Taste 1 
Zum Seiteninhalt oder mit Tastenkombination für den accesskey und Taste 2 
  1. SucheSuchen         
  2. SoSe 2019
  3. Hilfe
  4. Sitemap
Switch to english language
Startseite    Anmelden     

BSc/MSc-Praktikum: Big Data Analytics - Einzelansicht

Grunddaten
Veranstaltungsart Praktikum
Veranstaltungsnummer 3261 Kurztext
Semester WiSe 2014/15 SWS 4
Erwartete Teilnehmer/-innen 10 Max. Teilnehmer/-innen
Rhythmus i.d.R. jedes 2. Semester Studienjahr / Zielgruppe
Credits 6
Hyperlink http://www.ismll.uni-hildesheim.de/lehre/prakAIML-14w/index.html Evaluation Ja (als gesamte Veranstaltung - Papier)
Sprache englisch
Termine Gruppe: 1-Gruppe iCalendar Export
  Tag Zeit Rhythmus Dauer Raum (mögliche Änderungen beachten!) Raum-
plan
Lehrperson Status Bemerkung fällt aus am Max. Teilnehmer/-innen
Einzeltermine anzeigen
iCalendar Export
Mo. 14:00 bis 18:00 c.t. wöchentlich Gebäude B (Samelson-Campus) - B 026 (Seminarraum) Raumplan        
Gruppe 1-Gruppe:


Zugeordnete Personen
Zugeordnete Personen Zuständigkeit
Khan, Umer , M.Sc. durchführend, nicht verantwortlich
Schmidt-Thieme, Lars, Professor Dr. Dr. verantwortlich, nicht durchführend
Studiengänge
Abschluss Studiengang Semester ECTS Kontingent
Bachelor B.Sc. I M I T
Bachelor B.Sc. Wirtschaftsinformat (PO 2011)
Bachelor B.Sc. Wirtschaftsinformat (PO 2014)
Master M.Sc. Informationsmanagm.
Master M.Sc. Wirtschaftsinf. (PO 2011)
LSF - Module
Modulkürzel Modultitel
WI-PRBI Praktikum Business Intelligence und Data Mining
MIT-PML Master-Praktikum Maschinelles Lernen
IT-PKI Praktikum Künstliche Intelligenz
0ERA-6LP Veranstaltungen mit 6 Credits f. ausl. Programmstud. (ERASMUS)
Zuordnung zu Einrichtungen
Abt. Wirtschaftsinformatik und Maschinelles Lernen
Inhalt
Literatur
  • Anand Rajaraman, Jure Leskovec, and Jeffrey Ullman, "Mining of massive datasets"
  • Hadoop: The Definitive Guide by Tom White 
  • Yucheng Low et. al., "Distributed GraphLab: A Framework for Machine Learning and Data Mining in the Cloud", 2012, PVLDB.
Lerninhalte

Storage, retrieval, analysis and mining from huge amount of data is a challenging topic that has made significant impact in several domains in both industry and academia. This implementation-oriented course offers hands-on experience with state-of-the-art tools and techniques that the big data industry is using for analyzing massively huge data sets. Particularly, we cover following main topics: 

  • Large Scale distributed file systems and data storage frameworks
  • Computational models for large scale data (e.g. MapReduce and GraphLab)
  • Data Stream analysis
  • Statistical learning techniques for large scale data
Zielgruppe

Für Studierende der Bachelor-und Masterstudiengänge Wirtschaftsinformatik und Informationsmanagement und Informationstechnologie


Strukturbaum
Keine Einordnung ins Vorlesungsverzeichnis vorhanden. Veranstaltung ist aus dem Semester WiSe 2014/15 , Aktuelles Semester: SoSe 2019
Impressum      Datenschutzerklärung     Datenschutz