Wenn Sie diesen Text sehen, ist auf ihrem Gerät noch nicht das neue Layout geladen worden. Bitte laden Sie diese Seite neu (ggf. mit gedrückter 'Shift'- oder 'Alt'-Taste) oder in einem 'privaten Fenster'.
Weitere Hinweise unter https://www.uni-hildesheim.de/wiki/lsf/faq/fehler.im.layout.

Zur Seitennavigation oder mit Tastenkombination für den accesskey-Taste und Taste 1 
Zum Seiteninhalt oder mit Tastenkombination für den accesskey und Taste 2 
  1. SucheSuchen         
  2. SoSe 2019
  3. Hilfe
  4. Sitemap
Switch to english language
Startseite    Anmelden     

Big Data Analytics - Einzelansicht

Grunddaten
Veranstaltungsart Vorlesung Co-finanziert aus Studienbeiträgen N
Veranstaltungsnummer 3251 Kurztext
Semester SoSe 2014 SWS 3
Erwartete Teilnehmer/-innen 20 Max. Teilnehmer/-innen
Rhythmus i.d.R. jedes 2. Semester Studienjahr / Zielgruppe
Credits 5
Hyperlink http://www.ismll.uni-hildesheim.de/lehre/bd-14s/ Evaluation Ja (als gesamte Veranstaltung - Papier)
Sprache englisch
Termine Gruppe: 1-Gruppe iCalendar Export
  Tag Zeit Rhythmus Dauer Raum (mögliche Änderungen beachten!) Raum-
plan
Lehrperson Status Bemerkung fällt aus am Max. Teilnehmer/-innen
Einzeltermine ausblenden
iCalendar Export
Mo. 10:00 bis 12:00 c.t. wöchentlich von 28.04.2014  Gebäude B (Samelson-Campus) - B 026 (Seminarraum) Raumplan        
Einzeltermine:
  • 28.04.2014
  • 05.05.2014
  • 12.05.2014
  • 19.05.2014
  • 26.05.2014
  • 02.06.2014
  • 09.06.2014
  • 16.06.2014
  • 23.06.2014
  • 30.06.2014
  • 07.07.2014
  • 14.07.2014
  • 21.07.2014
Gruppe 1-Gruppe:
Termine Gruppe: Klausur iCalendar Export
  Tag Zeit Rhythmus Dauer Raum (mögliche Änderungen beachten!) Raum-
plan
Lehrperson Status Bemerkung fällt aus am Max. Teilnehmer/-innen
Einzeltermine anzeigen
iCalendar Export
Di. 10:00 bis 12:00 s.t. Einzeltermin am 12.08.2014 Gebäude B (Samelson-Campus) - B 026 (Seminarraum) Raumplan        
Gruppe Klausur:
Prüfungstermine
Semester Termin Prüfer/-in Parallelgruppe Datum Prüfungsform Beginn Anmeldefrist Ende Anmeldefrist Ende Abmeldefrist Infos zu Nachschreibterminen
SoSe 2014 01 12.08.2014 Klausur 07.08.2014 VERBINDLICH 07.08.2014 VERBINDLICH


Zugeordnete Personen
Kontaktperson (durchführend) Zuständigkeit
Drumond, Lucas, Dr. rer. nat., M.Sc. verantwortlich und durchführend
Weitere Person Zuständigkeit
Schmidt-Thieme, Lars, Professor Dr. Dr. verantwortlich, nicht durchführend
Studiengänge
Abschluss Studiengang Semester ECTS Kontingent
Master M.Sc. Informationsmanagm.
Master M.Sc. Wirtschaftsinf. (PO 2011)
LSF - Module
Modulkürzel Modultitel
MIT-V6KIMa Gebiet KIML (WINF/IMIT), Vorl 6AP (MA vor PO 2014)
0ERA-8LP Veranstaltungen mit 8 Credits f. ausl. Programmstud. (ERASMUS)
Zuordnung zu Einrichtungen
Abt. Wirtschaftsinformatik und Maschinelles Lernen
Inhalt
Literatur

- Anand Rajaraman, Jure Leskovec, and Jeffrey Ullman, Mining of massive datasets,
- Yucheng Low, Joseph Gonzalez, Aapo Kyrola, Danny Bickson, Carlos Guestrinand Joseph M. Hellerstein (2012).
"Distributed GraphLab: A Framework for Machine Learning and Data Mining in the Cloud." PVLDB.

Bemerkung

WI MSc
IMIT MSc
Gebiet: Business Intelligence

 

Lerninhalte

Speicherung, Abfrage, Analyse und Lernen von großen Datenmengen ist ein anspruchsvolles Thema, das erhebliche Auswirkungen in verschiedenen Bereichen der Industrie und der Wissenschaft hat. Die Vorlesung behandelt Grundbegriffe analysierender Verfahren des sogenannten "Big Data" sowie Beispiele für typische Anwendungen, die davon profitieren können.

Die Vorlesung umfasst folgende Themengebiete:

- Verteilte Dateisysteme und Datenspeicher-Frameworks
- Computermodelle für große Daten (z.B. MapReduce und GraphLab)
- Datenstrom Analyse
- Statistische Lernverfahren für große Datenmengen
- Large Scale Empfehlungssysteme
- Link-Analyse

Zielgruppe

Studierende des Studiengangs Wirtschaftsinformatik / IMIT
Gebiet: Business Intelligence (MSc)



Zu dieser Veranstaltung gehört folgende Übung
Nr. Beschreibung SWS
3252 Big Data Analytics 2

Strukturbaum
Keine Einordnung ins Vorlesungsverzeichnis vorhanden. Veranstaltung ist aus dem Semester SoSe 2014 , Aktuelles Semester: SoSe 2019
Impressum      Datenschutzerklärung     Datenschutz