Wenn Sie diesen Text sehen, ist auf ihrem Gerät noch nicht das neue Layout geladen worden. Bitte laden Sie diese Seite neu (ggf. mit gedrückter 'Shift'- oder 'Alt'-Taste) oder in einem 'privaten Fenster'.
Weitere Hinweise unter https://www.uni-hildesheim.de/wiki/lsf/faq/fehler.im.layout.

Zur Seitennavigation oder mit Tastenkombination für den accesskey-Taste und Taste 1 
Zum Seiteninhalt oder mit Tastenkombination für den accesskey und Taste 2 
Startseite    Anmelden     

Distributed Data Analytics - Einzelansicht

Grunddaten
Veranstaltungsart Praktikum Learnweb   Logo Learnweb
Veranstaltungsnummer 3113 Kurztext
Semester SoSe 2024 SWS 4
Erwartete Teilnehmer/-innen Max. Teilnehmer/-innen
Rhythmus i.d.R. jedes 2. Semester Studienjahr / Zielgruppe
Credits 6
Hyperlink https://www.ismll.uni-hildesheim.de/lehre/prakAIML-21s/index_en.html Evaluation Ja - Präsenzveranstaltung
Sprache englisch
Termine Gruppe: 1-Gruppe iCalendar Export
  Tag Zeit Rhythmus Dauer Raum (mögliche Änderungen beachten!) Raum-
plan
Lehrperson Status Bemerkung fällt aus am Max. Teilnehmer/-innen
Einzeltermine anzeigen
iCalendar Export
Mi. 14:00 bis 18:00 Einzeltermin am 12.06.2024 Gebäude A (Samelson-Campus) - SC.A.0.09 (Großer Seminarraum) Raumplan        
Einzeltermine anzeigen
iCalendar Export
Fr. 10:00 bis 16:00 Einzeltermin am 02.08.2024 Gebäude A (Samelson-Campus) - SC.A.0.09 (Großer Seminarraum) Raumplan        
Einzeltermine anzeigen
iCalendar Export
Mo. 14:00 bis 18:00 c.t. wöchentlich Gebäude C (Samelson-Campus) - SC.C.1.47 (Computerraum) Raumplan        
Gruppe 1-Gruppe:
Termine Gruppe: 2-Gruppe iCalendar Export
  Tag Zeit Rhythmus Dauer Raum (mögliche Änderungen beachten!) Raum-
plan
Lehrperson Status Bemerkung fällt aus am Max. Teilnehmer/-innen
Einzeltermine anzeigen
iCalendar Export
Do. 10:00 bis 14:00 c.t. wöchentlich          
Gruppe 2-Gruppe:
Termine Gruppe: 3-Gruppe iCalendar Export
  Tag Zeit Rhythmus Dauer Raum (mögliche Änderungen beachten!) Raum-
plan
Lehrperson Status Bemerkung fällt aus am Max. Teilnehmer/-innen
Einzeltermine anzeigen
iCalendar Export
Do. 14:00 bis 18:00 c.t. wöchentlich Gebäude C (Samelson-Campus) - SC.C.1.47 (Computerraum) Raumplan        
Einzeltermine anzeigen
iCalendar Export
Do. 14:00 bis 18:00 c.t. wöchentlich          
Gruppe 3-Gruppe:


Zugeordnete Personen
Kontaktpersonen (durchführend) Zuständigkeit
Abdelmalak, Ibram durchführend, nicht verantwortlich
Coello de Portugal Mecke, Diego durchführend, nicht verantwortlich
Dittrich, Sören durchführend, nicht verantwortlich
Weitere Person Zuständigkeit
Schmidt-Thieme, Lars, Professor Dr. Dr. verantwortlich, nicht durchführend
Studiengänge
Abschluss Studiengang Semester ECTS Kontingent
Bachelor B.Sc. I M I T
Bachelor B.Sc. Wirtschaftsinformat
Master M.Sc. Data Analytics
Master M.Sc. Informationsmanagm.
Master M.Sc. Wirtschaftsinf.
LSF - Module
Modulkürzel Modultitel
0ERA-6LP Veranstaltungen mit 6 Credits f. ausl. Programmstud. (ERASMUS)
IT-PKI Praktikum Künstliche Intelligenz
MIT-PML Master-Praktikum Maschinelles Lernen
MDA-LCDDA Lab Course Distributed Data Analytics
MWI-PRDDA Praktikum Distributed Data Analytics
Zuordnung zu Einrichtungen
Abt. Wirtschaftsinformatik und Maschinelles Lernen
Inhalt
Literatur
  • Murphy, Kevin P. Machine learning: a probabilistic perspective. MIT press, 2012.
    Christopher M. Bishop (2006): Pattern Recognition and Machine Learning.
    Lutz, Mark. Learning python. " O'Reilly Media, Inc.", 2013.
Lerninhalte

This implementation-oriented course offers hands-on experience with current algorithms and approaches in Machine Learning and Artificial Intelligence, and their application to real-world learning and decision-making tasks. Praktikum will also cover empirical methods for comparing learning algorithms, for understanding and explaining their differences, for analyzing the conditions in which a method is more suitable than others.
On weekly basis, we shall implement linear models for predictions (Linear Regression, Logistic Regression), classification trees (Decision trees), prototype method for clustering (K-Means), prototype classification methods (K-Nearest Neighbor, Naive Bayes classifier, Support Vector Machines) and link-based ranking algorithm PageRank.
The programming language for this course will be Python. We will also look at most popular libraries for solving different models.

Zielgruppe

MSc WI & IMIT & AINF & DA -  MSc 1-3


Strukturbaum
Keine Einordnung ins Vorlesungsverzeichnis vorhanden. Veranstaltung ist aus dem Semester SoSe 2024 , Aktuelles Semester: WiSe 2024/25
Impressum      Datenschutzerklärung     Datenschutz      Datenschutzerklärung     Erklärung zur Barrierefreiheit