Wenn Sie diesen Text sehen, ist auf ihrem Gerät noch nicht das neue Layout geladen worden. Bitte laden Sie diese Seite neu (ggf. mit gedrückter 'Shift'- oder 'Alt'-Taste) oder in einem 'privaten Fenster'.
Weitere Hinweise unter https://www.uni-hildesheim.de/wiki/lsf/faq/fehler.im.layout.

Zur Seitennavigation oder mit Tastenkombination für den accesskey-Taste und Taste 1 
Zum Seiteninhalt oder mit Tastenkombination für den accesskey und Taste 2 
Startseite    Anmelden     

An Analysis of Variability Modeling Concepts: Expressiveness vs. Analyzability (Beitrag zu einer Tagung / Konferenz) - Einzelansicht


  • Funktionen:

Grunddaten

Titel der Arbeit (title) An Analysis of Variability Modeling Concepts: Expressiveness vs. Analyzability
Erscheinungsjahr 2013
Verlag (publisher) Springer
Buchtitel (booktitle) Proceeding of the 13th International Conference on Software Reuse (ICSR '13)
Herausgeber_in (editor) John Favaro and Maurizio Morisio
Seitenzahl (pages) 32-48
Publikationsart Beitrag zu einer Tagung / Konferenz
Digital Object Identifier (DOI) 10.1007/978-3-642-38977-1_3
Inhalt
Abstract Variability modeling is a core activity of software product line engi-neering. Over the years, many different approaches to variability modeling have been proposed. Typically, the individual approaches have been designed with-out a detailed justification on why certain modeling concepts should be used. This yields a rather unfunded selection of modeling approaches in practice, e.g., selecting approaches that provide higher modeling concepts than actually need-ed, but less analyses capabilities than required. Thus, we propose that the focus of an analysis should not be to determine the best modeling language, but rather to provide a characterization on when to use what kind of approach. In particu-lar, the selection of one approach for a specific situation should be driven from the required modeling concepts (expressiveness) and the required analyzability. In this paper, we propose a classification of core concepts of variability model-ing based on expressiveness and analyzability. We discuss the methodology for and the classification of variability modeling concepts illustrated by a running example. The contribution of this paper is a modeling approach-independent classification of variability modeling concepts and their dependencies to pro-vide a systematic and rationale basis to anyone designing, standardizing, im-plementing or selecting a specific variability modeling approach.

Beteiligte Personen

Eichelberger, Holger, Dr.  
Kröher, Christian  M.Sc.  
Schmid, Klaus, Professor Dr. rer. nat.  

Einrichtung

Abt. Software Systems Engineering

Schlüsselwörter

Projekt Indenica
Impressum      Datenschutzerklärung     Datenschutz      Datenschutzerklärung     Erklärung zur Barrierefreiheit