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ABSTRACT

A number of SAT-based analysis concepts and tools for software

product lines exist, that extract code dependencies in propositional

logic from the source code assets of the product line. On these

extracted conditions, SAT-solvers are used to reason about the vari-

ability. However, in practice, a lot of software product lines use

integer-based variability. The variability variables hold integer val-

ues, and integer operators are used in the conditions. Most existing

analysis tools can not handle this kind of variability; they expect

pure Boolean conditions.

This paper introduces an approach to convert integer-based vari-

ability conditions to propositional logic. Running this approach as

a preparation on an integer-based product line allows the existing

SAT-based analyses to work without any modiications. The pure

Boolean formulas, that our approach builds as a replacement for

the integer-based conditions, are mostly equivalent to the original

conditions with respect to satisiability. Our approach was moti-

vated by and implemented in the context of a real-world industrial

case-study, where such a preparation was necessary to analyze the

variability.

Our contribution is an approach to convert conditions, that use

integer variables, into propositional formulas, to enable easy usage

of SAT-solvers on the result. It works well on restricted variables (i.e.

variables with a small range of allowed values); unrestricted integer

variables are handled less exact, but still retain useful variability

information.

CCS CONCEPTS

·Theory of computation→Equational logic and rewriting; ·

Software and its engineering→ Software product lines; Soft-

ware reverse engineering;
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1 INTRODUCTION

Many software product lines use the C-preprocessor for implement-

ing variability in their source code [6, 11]. The #if-statement is

used to conditionally compile source code parts. The expressions

use variability variables to determine whether the following code

lines should be included in the product for a given coniguration.

Typically, such product lines use mostly Boolean variables. A well

known example for this kind of code variability is the Linux Kernel.

Most of its variability variables are Boolean or tristate. Tristates

allow three diferent values, and are implemented using pairs of

Boolean variables in the C-preprocessor.

There exist a lot of family-based analysis [15] approaches and

tools for these kinds of product lines. Undertaker inds code blocks

that can never be (un-)selected [14, 17]. TypeChef, among other

things, inds type errors across all conigurations at once [7, 16]. The

feature-efect approach deines Boolean formulas that represent

under which condition a given variability variable has an efect on

the inal product [12]. The coniguration mismatch analysis builds

on that and inds constraint mismatches between the code and

the variability model [5]. All of these approaches have in common

that they use SAT-solvers (or techniques similar to SAT) to reason

about the variability in the source code. Because of this, they only

work with code dependencies in propositional logic; all variability

variables are expected to be Booleans, and the #if-conditions in

the code may only contain Boolean operations.

However, there are also software product lines that are not lim-

ited to propositional logic in their variability. For example, an in-

dustrial product line we analyzed uses integer-based variability [4].

Each variability variable holds an integer value, out of a deined

(typically small) range of allowed values. The #if-conditions in

the code then use the integer arithmetic and comparison operators

that the C-preprocessor deines. None of the existing analysis tools

mentioned above can handle such variability conditions, because

they are built on pure SAT-based approaches. However, we still

wanted to use some of the analysis approaches that they ofer on

the integer-based product line.

To deal with this incompatibility, we developed and implemented

an approach to convert the variability in the source code of the

product line to a format that is suitable for the existing analysis

tools. Our tool creates a copy of the source iles in the product line,

and replaces all integer-based #if-conditions with propositional

formulas. This allows easy usage of SAT-solvers on the converted

code conditions. As a result, all existing analysis tools are able to

https://doi.org/10.1145/3236405.3237202
https://doi.org/10.1145/3236405.3237202
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extract variability information from the modiied source code iles,

without any modiications of the tools. Our tool is implemented

in the context of the ITEA3 project REVaMP2, as an open-source

plugin for the KernelHaven analysis framework [8ś10].

This paper introduces the approach we developed to transform

integer-based variability conditions to propositional logic. It reverse

engineers the code dependencies from an existing product line, and

transforms them into a format that is understood by existing, SAT-

based analysis tools. This is based on the industrial use case we

analyzed. The variability variables all hold integer values, and most

of them have a (typically small) range of allowed values. These

ranges are an input to the transformation process and are, for

example, deined in a variability model of the product line. The

execution time of the transformation process scales linearly with

the size of the product line to transform. The overhead is generally

insigniicant, compared to the following analysis steps.

Some corner cases can not be covered by our approach; thus the

resulting propositional formulas are sometimes not completely eq-

uisatisiable, compared to the original integer-based ones. However,

we implemented a fallback strategy that produces less accurate

results, but still retains useful variability information in these cases.

In practice, the resulting formulas are good enough for the analysis

tools mentioned above to produce reasonable results.

The remainder of this paper is structured as follows: Section 2

presents work related to integer-based variability. Section 3 intro-

duces the basic concept of our transformation approach. Based

on this, Section 4 describes the implementation of our approach

in more detail and walks through a full example transformation.

Section 5 discusses the limitations of our approach, while Section 6

evaluates the implementation. Finally, Section 7 summarizes this

paper and shows possible future work.

2 RELATED WORK

Existing research shows that integer-based (or more broadly: non-

Boolean) variability is used in real-world software product lines.

Passos et al. studied the non-Boolean variability used in the eCos

product line [13]. They speciically study the kinds of constraints

that non-Boolean variables are used in, and describe the challenges

that this kind of variability poses for analyses. Berger et al. stud-

ied real-world variability modeling techniques [2]. All the product

lines they studied use integers as variability variables, although the

percentage of variability that is integer-based varies. They found

that academic analyses often make simplifying assumptions about

the structure of variability. In contrast to that, our approach pre-

sented in this paper was driven by a real-world industrial use-case,

that uses integer-based variability [4]. Thus, it does not include the

common simpliications found in some academic concepts.

Analyses that run on product lines that use integer-based vari-

ability have to use strategies to deal with the integer variables

and constraints. This could be done by employing a solver that

can directly work with such constraints. Barrett et al. developed

a irst-order logic solver that incrementally translates parts of the

expression to SAT, while solving it [1]. Satisiability modulo theory

(SMT) solvers, for example the Z3 solver by Microsoft [3], handle

irst-order logic conditions directly. Such a solver does not require

a translation to SAT. Xiong et al. use Z3 for their approach to ix

ill-formed conigurations that contain integer variables [18]. An

ill-formed coniguration violates one or more of the constraints im-

posed by the variability model. Their approach calculates valid

ranges for integer variables, that adhere to these violated con-

straints. It works directly on the integer-based constraint, without

a translation to SAT.

The existing SAT-based analysis approaches and tools, intro-

duced in Section 1, could use such a solver to handle integer-based

variability. However, this would require to modify the tools; they

need to be extended to parse and represent the integer-based con-

ditions, and their SAT-solver needs to be swapped for one of the

solvers mentioned above. In contrast, our approach works as a

preparation for the product line, and no modiication is required to

the SAT-based analysis tools. Our approach takes advantage of the

fact that in the analyzed product line, most of the integer variables

have only a limited range of allowed values. Additionally, we expect

the runtime of a more powerful solver to be much higher than the

runtime of our preparation approach plus the simple SAT-solvers.

3 CONCEPT

This section introduces our concept for converting integer-based

conditions to propositional formulas. First, we describe the struc-

ture of the integer-based conditions of the product line. Then we

explain why existing analysis tools can not work with these con-

ditions directly. Finally, we introduce our approach that solves

the incompatibility between the integer-based conditions and the

existing, propositional logic-based analysis tools.

The source code in product lines that wewant to analyze contains

integer-based variability conditions in the C-preprocessor. The

variables used in the conditions hold integer values, and have a

(typically small) range of allowed values. All integer arithmetic

operations (+, −, ∗, /, %, &, |, ^, ∼) and integer comparison operators

(==, ! =, >, >=, <, <=) that the C-preprocessor deines are used in

the conditions. Additionally, the Boolean operators (&&, | |, !) and

the defined function are used. The defined(VAR) function returns

whether any value has been set for the variable. For instance, a

condition from such a product line may look like this:

#if (VAR_A * 2 > VAR_B) || defined(VAR_C) (1)

with the variability model specifying the possible ranges for the

integer variables: VAR_A ∈ {1, 2, 3} and VAR_B ∈ {5, 6}.

The existing tools for analyzing C-preprocessor based variability,

introduced in Section 1, can only handle conditions in propositional

logic. This is because they use SAT-based approaches to reason

about variability. Only Boolean operators (&&, | |, !) and Boolean

variables are allowed in the variability conditions that they extract.

The convention for Boolean variables in the C-preprocessor is to use

the defined function on a variable, and denoting the two possible

states by either deining or not deining the variable. An example

of such a product line is the Linux Kernel, which is also a common

target for research analysis tools [14]. The existing analysis tools

expect the analyzed code to follow this convention for pure Boolean

conditions; they can not handle integer-based conditions, where

the value that a variable holds is important. Additionally, they often

simply can not parse the integer operations that are used in the

conditions.



Converting Integer-Based Variability to Propositional Logic SPLC’18, September 10–14, 2018, Gothenburg, Sweden

The goal of our approach is to construct conditions in proposi-

tional logic, that are, with respect to satisiability, mostly equal to

the integer-based conditions in the source code. Thus, after prepar-

ing the code artifacts with our approach, all the existing tools can

be used on the previously integer-based product line. The proposi-

tional replacements hold mostly the same variability information

as the integer-based conditions, with respect to the satisiability of

the code dependencies. This ensures that the results produced by

the SAT-based analysis approaches are reasonable and useful for

the analyzed product line.

Our approach introduces Boolean variables for each possible

value of the integer variables. This is feasible, because most of the

integer variables have only a small range of allowed values. For

each integer-based condition, we calculate which combinations of

values satisfy this condition. From this, a propositional formula

using the introduced Boolean variables is created, that relects these

combinations. Additionally, we introduce another Boolean variable

for each integer variable, that denotes whether the variable is set

to any value, or whether it is undeined. This is used for resolving

defined calls, and as a fallback for cases that our approach can not

calculate exact solutions for (see Section 5).

More formally, let V be the set of all integer-based variability

variables,R : V → P(Z) a function that deines the range of allowed

values for each variable, and B a set of Boolean variables. We then

introduce a function

σ : V × (Z ∪ {ϵ}) → B

which injectively maps a variable and one possible value of it to a

Boolean variable. ϵ in place of a value maps to the Boolean variable

that denotes whether the integer variable is deined or not (i.e.

whether it is set to any value). For instance, consider the variable

VAR_A with R(VAR_A) = {1, 2, 3}. VAR_A may be set to either 1, 2, or

3. σ (VAR_A, ϵ) returns the Boolean variable that denotes whether

VAR_A is deined. σ (VAR_A, 1) returns the Boolean variable that

denotes that VAR_A is set to 1. In practice, such variable names may

look like this: σ (VAR_A, 1) = VAR_A_eq_1, σ (VAR_A, ϵ) = VAR_A.

The exact naming scheme depends on the context that the approach

is applied in; it has to ensure that no name collisions occur, and

that the names are valid identiiers for the C-preprocessor.

There are two constraints for the introduced Boolean variables,

which are not explicitly modeled. These have to be manually con-

sidered when interpreting the result of any analysis done on the

propositional formulas:

(1) The Boolean variables for the possible values of an integer

variable are mutually exclusive:

∀v ∈ V , ∀i, j ∈ R(v), i , j | σ (v, i) =⇒ ¬σ (v, j)

(2) The ϵ Boolean variable is true if and only if a value is set for

the integer variable, that is if any of the Boolean variables

denoting the possible values is true:

∀v ∈ V | σ (v, ϵ) ⇐⇒
∨

i ∈R(v)

σ (v, i)

These newly introduced Boolean variables are used to replace

the integer-based (sub-)expressions in the conditions. We calcu-

late which combinations of allowed values fulill the integer-based

(sub-)expression, and build a Boolean formula that is equally satis-

iable to this. For the example condition shown in Formula 1, the

propositional replacement would look like this:

#if (VAR_A_eq_3 && VAR_B_eq_5) || VAR_C

(the defined calls around each of these variables has been left

out for brevity). The integer sub-expression VAR_A * 2 > VAR_B

is only fulilled by the combination VAR_A=3 (with σ (VAR_A, 3) =

VAR_A_eq_3) and VAR_B=5 (withσ (VAR_B, 5) = VAR_B_eq_5). Thus,

the replacement for this sub-expression is a Boolean formula for

this combination of values. The sub-expression defined(VAR_C)

is replaced with σ (VAR_C, ϵ) = VAR_C .

In many cases, the resulting propositional formula is much larger,

compared to the original integer-based one. The goal, however, is

not to produce small or readable conditions, but to provide input

data for analysis tools. Thus, it is not a primary concern to keep

the resulting propositional formulas concise.

A special case are integer variables that have no restriction on

the allowed values. The łallowed valuesž for such a variable are for

example the whole range of 32 bit integer variables. It is not possible

(or at least not feasible) to introduce Boolean variables for each

of the possible values. In this case, we take a less exact approach

to still be able to handle these variables: we only introduce the

single Boolean variable σ (var , ϵ). Then, in each condition where

the unrestricted variable appears, we use this Boolean variable, no

matter which actual value of the variable would fulill the condition.

This way, we still have the variability information that the given

condition somehow depends on the unrestricted variable; however,

we lose the information which speciic values it depends on. For

example, the condition VAR_A+2 > 5, with VAR_A as an unrestricted

integer variable, is converted to σ (VAR_A, ϵ).

Another special case are variables with only one possible allowed

value. These variables are not real variability, since they can not

be set to any other value. Thus, we treat them as constants and

replace each occurrence of them with their literal value. This makes

it easier to calculate the combinations of the other integer variables,

that satisfy a constraint. It also removes unnecessary variables

from the propositional formulas, and thus reduces the unnecessary

complexity of the output.

4 IMPLEMENTATION

This section describes the implementation of our approach. First,

the general steps for converting a condition are explained. Then,

the transformation of the integer (sub-)expressions is described in

detail in Section 4.1. This is followed by Section 4.2 with an example

of a complete conversion of a code condition.

Our tool reads through all source iles and replaces the C-pre-

processor conditions in them with a propositional formula. The

result is a copy of the source iles with all the C-preprocessor condi-

tions transformed into a purely Boolean form. This allows existing

analysis tools, which are based on propositional logic, to work

with these iles. Each of the C-preprocessor conditions found in the

source iles is converted in the following steps:

(1) Parse the condition into an abstract syntax tree (AST)

(2) Replace constants with their literal value

(3) Walk bottom-up through the AST to replace integer-parts
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(4) Convert AST back to a C-preprocessor condition string

The irst step is straightforward parsing of the C-preprocessor

condition. All the subsequent steps will work on the AST that

is produced by this. In the second step, each constant that has

only one allowed value is replaced by its literal value. This removes

constant values, which do not need to be consideredwhen analyzing

variability.

The third step is the main part of the conversion to a proposi-

tional form. The goal is to convert all integer-parts of the conditions

to pure Boolean ones, that have equivalent satisiability. The strat-

egy used here is to walk bottom-up through the AST and apply a

number of rules on the AST that deine how the integer operations

are converted. The following section will explain these rules in

detail.

Finally, after the integer parts are eliminated, the AST is con-

verted back into a C-preprocessor condition string. This string is

then used as the replacement for the original condition. It will only

contain Boolean variables and operators, so that existing tools for

propositional logic can handle it.

4.1 Transformation of Integer Expressions

This section describes how the integer-based (sub-)expressions are

converted to Boolean formulas. In the AST, the highest operator of

an integer (sub-)expression is a comparison operator1. On the left

and right side of this comparison, there are literals, variables, or

arithmetic operations combining both. The general idea is to ind

all possible combinations of allowed values for the variables on the

left and right side that fulill the comparison operator. These values

are then transformed into Boolean variables using the σ function.

A propositional formula is constructed from them, that is satisiable

for all combinations that fulill the comparison.

Integer arithmetic operations are evaluated bottom-up, so that

eventually the comparison operation can be evaluated on the re-

sulting values. When resolving the arithmetic operations, they are

applied on all possible values of a variable. This results in a set of

values, instead of a single result value for the operation. This is

needed, because we want to ind all possible values that fulill the

comparison at once.

It is also not enough to just compute the results of integer arith-

metic operations on variables. When a result value that fulills the

comparison operator is found, the original value of the variable that

led to this result value is required to construct the Boolean variable

using the σ function. We call the result of arithmetic operations

the current value and the initial value of the allowed range of the

variable that this result stems from the original value. For instance,

consider the integer expression VAR_A + 1 == 2. When evaluating

the + operation, the original value 1 of VAR_A led to the current

value 2. When resolving the equality operator, the current value 2

for the left side fulills this comparison. Thus, the Boolean variable

of the original value that led to this is constructed: σ (VAR_A, 1).

The following sub-sections describe the diferent evaluation rules

in detail. The rules are applied on the AST, based on which integer

operator is used on which input types.

1Sometimes there are no explicit comparison operators to convert integer expressions
to Boolean values. In this case, a != 0 comparison can be assumed, since all integer
values except 0 are deined to be true in the C-preprocessor.

• comparison operator refers to integer comparison operators

(==, ! =, <, <=, >, >=)

• arithmetic operator refers to integer arithmetic operators (+,

−, ∗, /, %, &, |, ^, ∼)

• literal refers to literal integer values

• variable refers to integer variables, with a deined range of

allowed values

4.1.1 Arithmetic Operator on two Literals. For integer arithmetic

operations on two literal values, the result is simply calculated.

2 4 

* 

8 

In this igure, the expression 2 * 4 results in the literal value 8.

4.1.2 Comparison Operator on two Literals. For comparison opera-

tions on two literal values, the resulting Boolean constant is simply

calculated. Neither side of the comparison contains any integer

variables, thus a single Boolean literal can express the satisiability

of this (sub-)expression.

4.1.3 Arithmetic Operator on Literal and Variable. For integer arith-

metic operations on variables, the operation is calculated on each

of the allowed values. A set of tuples is stored in the variable, which

contains for each original value, the currently computed value. All

arithmetic operations on this variable will always update the current

value. When resolving the variable to a Boolean formula later on,

it is important which original value led to the currently computed

one.

VAR_A 

{(1,1), (2,2), (3,3)} 

2 

+ 

current original 

VAR_A 

{(3,1), (4,2), (5,3)} 

In this igure, the literal value 2 is added to VAR_A. VAR_A has

three possible values: 1, 2, and 3. For each of these possible values,

the operation is computed and the result stored in the irst compo-

nent in the tuple. The second component is not modiied; it contains

the original value of VAR_A that led to the currently computed one.

For example, in the second tuple of the result, the original value 2

of VAR_A led to the current value of 4 (via the addition of 2).

4.1.4 Comparison Operator on Variable and Literal. A comparison

of a variable and an integer literal is resolved to a propositional

formula, which contains all possible original values that satisfy the

comparison. The comparison is computed on all the current values

stored in the variable. For each current value that satisies the com-

parison, the corresponding original value of the variable is turned
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into a Boolean variable via the σ function. All these Boolean vari-

ables that fulill the comparison are then combined with a Boolean

disjunction operator.

VAR_A 

{(3,1), (4,2), (5,3)} 

>= 

4 σ(VAR_A,2) σ(VAR_A,3) 

|| 

In this igure, VAR_A is compared with the literal 4 with a łgreater

thanž comparison operator. In this example, the current and original

values in the tuples are diferent; this is because some previous arith-

metic operation on VAR_A has modiied them. This is not always the

case (a variable can also be compared without doing arithmetic on

it irst), but we chose this for illustration purposes, to make it clear

that the current and original values have to be treated diferently.

Two of the current values (the irst component of the tuples) of

VAR_A fulill the comparison: the second and the third tuple. From

both these tuples, the original values (the second component) are

transformed into Boolean variables and combined with a logical

disjunction.

4.1.5 Comparison Operator on two Variables. A comparison of two

variables is resolved to a propositional formula that contains all

possible combinations of original values that satisfy the compar-

ison. For each pair of the current values of the two variables it is

checked if they fulill the comparison operator. For each pair that

does fulill it, the two original values of the variables are turned

into Boolean variables (via the σ function) and combined with a

logical conjunction operator. All of these conjunction terms are

then combined with a logical disjunction operator.

VAR_A 
{(3,1), (4,2), (5,3)} 

== 

VAR_B 
{(4,1), (5,2)} 

σ(VAR_A,2) 

σ(VAR_B,1) 

&& 

σ(VAR_A,3) 

σ(VAR_B,2) 

&& 

|| 

In this igure, there are two pairs of tuples that have the same

current value and thus fulill the equality operator: the second

one from VAR_A and the irst one of VAR_B both have the value

4, the third one from VAR_A and the second one from VAR_B both

have the value 5. For the irst pair, the original value of VAR_A

that led to the current value is 2 (the second component in the

tuple), while the original value of VAR_B is 1. Thus, the Boolean

representation of this combination is σ (VAR_A, 2) ∧ σ (VAR_B, 1).

Similarly, the Boolean representation of the second matching pair

is σ (VAR_A, 3) ∧ σ (VAR_B, 2). Since both of these pairs fulill the

equality operator, they are combined with a disjunction operator.

4.1.6 Arithmetic Operator on two Variables. For integer arithmetic

operations on two variables, the operation is done on each com-

bination of the current values of both variables. For each of these

calculated values, both of the original values of the variables that

led to this current value are stored. When turning this tuple into a

Boolean formula, not a single variable is created (e.g. σ (VAR_A, 2)),

but a logical disjunction of the two variables with the original values

stored in the tuple (e.g. σ (VAR_A, 2) ∧ σ (VAR_B, 1)) .

VAR_A 
{(3,1), (4,2)} 

+ 

VAR_B 
{(4,1), (5,2)} 

VAR_A 
VAR_B 

{(7,1,1), (8,1,2),(8,2,1),(9,2,2)} 

current 
original 
of VAR_A 

original 
of VAR_B 

In this igure, the two variables VAR_A and VAR_B, both with two

possible values, are added together. Combining the irst tuple of

both, results in the irst tuple of the result: the current values (the

irst components of the tuples: 3 and 4) are added together, resulting

in the new current value 7. Then, both of the original values (the

second components in the tuples) are stored in the result, to indicate

which original values of VAR_A and VAR_B led to the current value

of 7. When turning this tuple into a Boolean formula (if the current

value of this tuple fulills a comparison later on), then the original

values of both variables have to be considered: the resulting formula

is σ (VAR_A, 1) ∧ σ (VAR_B, 1).

4.2 Full Example

This section shows an example of a full transformation from an

integer-based C-preprocessor condition to a propositional formula.

The original condition to convert is:

#if (VAR_A * CONST_A > VAR_B) || defined(VAR_C)

with R(VAR_A) = {1, 2, 3}, R(VAR_B) = {5, 6}, R(VAR_C) = {0, 1},

and R(CONST_A) = {2}.

The irst step is to parse the condition into an abstract syntax

tree (AST):

|| 

VAR_A 

{1, 2, 3} 

CONST_A 

{2} 

* 

> 

VAR_B 

{5,6} 

defined 

VAR_C 

{0, 1} 

The second step replaces the constant CONST_A with its literal

value 2:



SPLC’18, September 10–14, 2018, Gothenburg, Sweden A. Krafczyk, S. El-Sharkawy, and K. Schmid

|| 

VAR_A 

{1, 2, 3} 

2 

* 

> 

VAR_B 

{5,6} 

defined 

VAR_C 

{0, 1} 

The third step is the main part of the conversion. The integer

sub-expression on the left side, VAR_A * 2 > VAR_B, is converted

into a propositional formula. First, the multiplication operation is

resolved, by multiplying each of the possible values of VAR_A with

the literal value 2:

VAR_A 

{(2,1),(4,2),(6,3)} 

VAR_B 

{(5,5),(6,6)} 

|| 

> defined 

VAR_C 

{0, 1} 

Then the comparison operator can be resolved. Only one pair of

tuples from VAR_A and VAR_B fulills this: the third tuple of VAR_A

and the irst tuple of VAR_B (6 > 5). This is then converted into a

propositional formula, that speciies that the original values 3 from

VAR_A and 5 from VAR_B fulill this comparison:

&& 

σ(VAR_A,3) σ(VAR_B,5) 

|| 

defined 

VAR_C 

{0, 1} 

The right side of the disjunction operator, defined(VAR_C), is

replaced with the ϵ variable for VAR_C:

σ(VAR_C,ϵ) && 

σ(VAR_A,3) σ(VAR_B,5) 

|| 

The AST now only contains Boolean variables and operators.

The fourth and inal step is to convert it back into a C-preprocessor

condition string (the defined calls around each of the variables

have been left out for brevity):

#if (VAR_A_eq_3 && VAR_B_eq_5) || VAR_C

5 LIMITATIONS

This section will discuss the limitations of the approach presented

in this paper. Both, the conceptual problems of our approach, and

the technical issues of our implementation are discussed.

An important conceptual problem is that unrestricted integer

variables are handled not exact. For integer variables that have

an ininite (or very large) range of allowed values, our approach

does not diferentiate between the diferent values that this variable

holds. Only the fact that a condition depends on the variable having

a deined value is represented in the replacement propositional

formula. For example, the condition VAR_A ∗ 2 > 5, with VAR_A as

an unrestricted integer variable, leads to the replacement condition

defined(VAR_A). This will also lead to some conditions, such as

VAR_A > 0 && VAR_A < 0, to appear satisiable in the propositional

formula.

The impact of this inexact strategy depends on the concrete

use-case where our approach is applied. The more unrestricted

integer variables are present in the variability model, the more of

a problem this becomes. Also the usage of these variables in the

conditions needs to be examined: if the unrestricted variables are

mixed together with the other integer variables in the conditions,

then the inexact results may inluence the other variables, too. In

contrast, if they are mostly used in separate conditions, then the

results for the restricted variables are unafected and remain exact.

In our industrial use-case, we found that this inexact strategy

does not have a large efect on calculating feature-efects [4]. The

feature-efect analysis builds formulas from the variability condi-

tions in the code, which specify when a certain feature has an efect

on the inal product. If a condition contains an unrestricted integer

variable, the propositional formula for it created by our approach

retains the information that the condition somehow depends on this

unrestricted variable. This is because our approach adds a σ (VAR, ϵ)

variable in place of the unrestricted variable. This dependency then

also appears in the calculation of the feature efects. It is not as

exact as the per-value analysis of the restricted variables, however

the general dependency is still included.

Another conceptual limitation of our approach is that result-

ing propositional formulas may be much larger than the original

integer-based ones. This is because our approach considers all pos-

sible values for integer variables when resolving integer operations

on them. When both sides of an operation are integer variables, a

pair-wise combination of their possible values is necessary. This

leads to a quadratic growth of combinations when multiple vari-

ables are combined in a series of arithmetic operations.

Generally, creating long replacement conditions is not a problem,

since they are only used as input for further analysis tools. The

formulas are not meant to be human-readable. However, in practice,

we encountered runtime and memory problems with too large

conditions in a very small number of cases.

To circumvent the runtime and memory problems of too large

conditions, our tool deines a ixed upper limit for the number of

value combinations to consider. When a series of arithmetic opera-

tions on variables exceeds this limit, we drop the per-value analysis

for this sub-expression. Instead, we fall back to a similar approach

used for the ininite integer variables: only σ (VAR, ϵ) variables are

created for all involved variables. This retains the information, that
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the condition somehow depends on these variables, but the infor-

mation which concrete values it depends on is lost.

Finally, there are a few minor technical issues with our imple-

mentation. These stem from the speciics of the C-preprocessor,

and are thus not inherent to our approach itself.

• The C-preprocessor has no well-deined data types. This

leads to a problem when evaluating the bit-wise negation

operator ∼, where the concrete type of an integer (bit size,

and whether it is signed or unsigned) is important for correct

results. However, in practice, this operator is not used much.

• Based on the underlying industrial use-case, our tool is only

designed to handle integer and Boolean variables in the C-

preprocessor conditions. It can not handle string variables, or

the string concatenation operator (##). When encountering

this, our tool will print a warning and skip replacing the

condition.

• TheC-preprocessor allows deining functions (with the #define

statement) that can be used in #if-statements. Our tool can

not interpret these functions; when such a function appears

in a condition, our tool will print a warning and skip replac-

ing the condition.

6 EVALUATION

We have evaluated the implementation of the approach presented

in this paper both in practice and with generated test cases. The

generated test cases were used to evaluate the performance of

the implementation. Each test case consists of 100 generated C

source iles with 10 #if-conditions each. The #if-conditions are

generated in a way that each of the transformation rules described

in Section 4.1 are covered. 5 integer variables are used throughout

these conditions, each with R(VAR) = {1, 2, 3, 4} as the range of

allowed values. The test cases were executed on a machine with

an Intel Core i7-6700 CPU with 3.40 GHz and 16 GiB RAM. The

execution time of the ile preparation, that is copying the iles and

converting all #if-conditions, was measured.

0 20000 40000 60000 80000 100000
0

500

1000

1500

2000

2500

Conditions

T
im

e
 [
m

s
]

Figure 1: Runtime with varying number of conditions

Figure 1 shows how the total number of #if-conditions in the C

source iles relates to the execution time of the tool. For this test

series, the number of #if-conditions per C source ile is increased

in steps of 50, starting from 50 and up to 1000 conditions per ile.

Figure 1 shows that the execution time grows linearly with the

number of conditions to process. This means, that when analyzing

a whole product line, the overhead of the preparation will also grow

linearly with the size of the product line.
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Figure 2: Runtime with varying ranges per variable

Figure 2 shows how the number of allowed values per variable

impacts the execution time. For this test series, the size of the range

of allowed values per variable was gradually increased, starting

from 2 and up to 18. Additionally, the upper limit for the number

of value combinations to consider (see Section 5) was removed.

When an integer operator has variables on both sides, our approach

considers all combinations of the allowed values for both variables.

This leads to a quadratic growth of combinations, that is visible

in Figure 2. However, when the upper limit for combinations to

consider is not removed, the execution time stays below 500 ms for

all test cases shown in this Figure. Limiting the number of combina-

tions to consider produces less accurate results (see Section 5), but

it mitigates the (potential) performance problem visible in Figure 2.

The implementation of the approach presented in this paper has

also been used in practice in the analysis of the Bosch PS-EC prod-

uct line [4]. Our tool converted the integer-based C-preprocessor

conditions to propositional logic. This allowed existing SAT-based

analyses to be used on the product line, without any modiication

to the existing analysis tools. The execution time of our preparation

tool was not signiicant, compared to the execution time required

for the following analysis steps. The resulting replacement condi-

tions created by our approach allowed the following analysis steps

to create meaningful results.

7 SUMMARY

In this paper, we developed an approach to convert integer-based

variability conditions to propositional logic. The original conditions

are deined using the C-preprocessor in source code iles. The vari-

ability variables used in the conditions hold integer values and are

restricted to a (usually small) range of allowed values. Our approach

converts all the conditions found in the source iles, and replaces

them with the created propositional formulas.

The goal of our approach is to easily use SAT-solvers even on

integer-based product lines. This enables the usage of a number of

existing, SAT-based tools and approaches without any modiication

to them. Thus, our approach ensures that the propositional formulas,
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that replace the integer-based one, are mostly equal to the original

conditions with respect to satisiability.

Section 3 described the general concept of our approach: Boolean

variables are introduced for each allowed value of the integer vari-

ables. This is viable, because the range of allowed values of a vari-

able is usually small. Our approach then converts the integer-based

conditions using these Boolean variables. It calculates for each inte-

ger (sub-)expression, which combination of allowed values fulills it.

A propositional formula, which relects this combination of values

that fulill the expression, is used as the replacement.

Section 4 explained how this is implemented. A set of rules is

applied on the abstract syntax tree, to evaluate the integer-parts

bottom-up. This evaluation keeps track of all allowed values of the

integer variables at once. When a comparison operator is reached,

a propositional formula can be constructured that speciies which

combinations fulill this comparison.

The approach also has a few limitations, as described in Section 5.

Most importantly, the handling of unrestricted integer variables is

not exact. Unrestricted integer variables are variables that have no

restrictions on the allowed values, or have a very large range of

allowed values. For these variables, our approach does not evaluate

each possible value individually. Instead, only a single Boolean

variable is used, that speciies whether the variable is set to any

value, or whether it is left undeined. This retains some useful

variability information, although it is not as exact as the per-value

analysis. In practice, this inexact approach still leads to reasonable

results in the further analyses.

Our approach is implemented as an open-source plugin for the

KernelHaven analysis framework [8, 9]. This implementation has

been used in practice to analyze the Bosch PS-EC product line [4].

Future work on integer-based product lines can utilize the ap-

proach presented in this paper to eiciently re-use existing, SAT-

based analyses. Additionally, the approach presented here can be

reined in the future. We already experiment with a heuristic to ind

intervals of unrestricted integer variables, that can be treated as

a single value. These equivalence classes would allow a per-value

analysis of unrestricted variables in the approach presented here,

and would thus improve the quality of the results.
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